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Abstract

We study resonance capture phenomena leading to energy pumping in systems with multiple degrees of freedom

(DOF), composed of N linear oscillators weakly coupled to strongly nonlinear attachments possessing essential

(nonlinearizable) cubic stiffness nonlinearities. First we present numerical evidence of energy pumping in the systems

under consideration, i.e., of passive, one-way (irreversible) transfer of externally imparted energy to the nonlinear

attachments, provided that the energy is above a critical level. To obtain a better understanding of the energy pumping

phenomenon we reduce the dynamics governing the chain–attachment interaction to a single, nonlinear integro-dif-

ferential equation that governs exactly the transient dynamics of the strongly nonlinear attachment. By introducing an

approximation based on Jacobian elliptic functions we derive an approximate set of two nonlinear integro-differential

modulation equations that govern the time evolution of the amplitude and phase of the motion of the attachment. This

set of modulation equations is studied both analytically and numerically.

We then perform a perturbation analysis in an Oð
ffiffi
e

p
Þ neighborhood of a 1:1 resonant manifold of the system in order

to study the attracting region in the reduced phase space of the system, that is responsible for resonance capture and

nonlinear energy pumping. This analysis provides a justification of the numerical findings.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In previous works (Vakakis and Gendelman, 2001; Vakakis et al., 2003) passive nonlinear energy pumping

of broadband vibration energy from a main (linear) damped structure to a damped, essentially nonlinear

attachment has been studied. It was shown that above a critical energy threshold the nonlinear attachment
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passively absorbs and confines energy from the linear structure, acting in essence as a nonlinear energy sink.

Energy pumping is caused by 1:1 resonance capture (Arnold, 1988; Quinn, 1997, 2002). Vakakis et al. (2003).

In this work resonance capture (and passive energy pumping) is studied for a system composed of a finite

chain of particles with a weakly coupled, essentially nonlinear attachment. We reduce the dynamics to a
single strongly nonlinear integro-differential equation governing the oscillation of the attachment, and

study the dynamics by asymptotic techniques. These asymptotic techniques are non traditional since they

are applied to analyze essentially nonlinear (nonlinearizable) transient (damped) dynamics; this dictated the

development of new analytical methods, capable of modelling the strongly nonlinear regimes considered.

This work contributes towards the development of a new paradigm for passively controlling vibration

and shock in engineering structures. In essence, this new paradigm is based on passively channelling un-

wanted energy of vibration into local nonlinear attachments also termed nonlinear energy sinks (NESs),

where this energy is confined and dissipated. The proposed design differs in a number of aspects from
existing ones. In contrast to classical linear vibration absorbers, which are narrowband devices (e.g., they

are effective in the neighbourhood of a single frequency) the proposed nonlinear local attachments are

capable of passively absorbing and dissipating broadband (transient) disturbances. Moreover, as shown in

this work the proposed attachments can nonlinearly interact with a series of structural modes, extracting a

significant amount of energy from each before engaging the next; this phenomenon (which is due to res-

onance capture cascades) is rather unique for the class of passive dynamic absorption devices considered

herein. In essence, the proposed local attachments act as passive, adaptive, boundary controllers.

In contrast to existing works in this field, we consider and analytically study general transient, strongly
nonlinear responses, and the techniques developed directly address the transient problem (and not the

steady-state as in the majority of existing works). We note that the proposed designs have wide applicability

to diverse problems encompassing many engineering disciplines, such as mechanical (vibration and shock

isolation of machines, packaging), civil (seismic mitigation) and aerospace (disturbance isolation of sen-

sitive devices during launch of payloads in space, flutter suppression). What contributes to the practicality

of the proposed NES design is, modularity (they can be connected to existing structures with minimal

structural modification), simplicity and passivity (does not require power to operate), and its relative

inexpensiveness compared to traditional structural redesigns.
2. Formulation of the problem and numerical evidence

The system under consideration is a finite chain of N particles with linear grounding stiffnesses,

undergoing linear next-neighbor interactions. The chain is coupled at its right boundary to a strongly

nonlinear, weakly damped oscillator (attachment). We wish to study the nonlinear interaction of the chain
with the attachment, and, in particular, nonlinear energy transfer exchanges resulting from this interaction.

The set of equations governing the dynamics is as follows:
€u1 þ u1ðx2
0 þ 2aÞ � au2 ¼ 0

€un þ unðx2
0 þ 2aÞ � aðunþ1 � un�1Þ ¼ 0; n ¼ 2; 3; . . . ;N � 1

€uN þ uN ðx2
0 þ aþ eÞ � auN�1 � ev ¼ 0

€vþ Cv3 þ eb _vþ eðv� uN Þ ¼ 0

ð1Þ
where un denotes the displacement of the nth particle of the chain, v the displacement of the nonlinear

oscillator, a the coupling between particles of the chain, b the damping coefficient of the nonlinear oscil-

lator, and x2
0 the stiffness of the on-site (grounding) quadratic potential. The perturbation parameter

0 � e � 1 scales the weak coupling between the chain and the nonlinear oscillator, and the parameter C
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denotes the strength of the essential (nonlinearizable) stiffness nonlinearity. As usual, dot denotes differ-

entiation with respect to time, and the particles are assumed to be of unit mass. For purpose of reference we

will refer to the following system with grounded boundary condition instead of the nonlinear attachment as

the ‘linear chain’:
Fig. 1.

freque
€u1 þ u1ðx2
0 þ 2aÞ � au2 ¼ 0

€un þ unðx2
0 þ 2aÞ � aðunþ1 � un�1Þ ¼ 0; n ¼ 2; 3; . . . ;N � 1

€uN þ uN ðx2
0 þ aþ eÞ � auN�1 ¼ 0

ð2Þ
To analyze the nonlinear interaction between the attachment and the chain in (1) it is instructive to
initially compute the approximate instantaneous frequency of the nonlinear oscillator during the motion.

This was analytically computed in (Vakakis and Gendelman, 2001) using the action-angle transformation

of the uncoupled nonlinear attachment:
XðtÞ ¼ NI1=3ðtÞ

N ¼ 3p4C

8Kð1=2Þ4

 !1=3

; IðtÞ ¼ p2 _v2ðtÞ
2K2NKð1=2Þ

 
þ v4ðtÞ

K4

!
; K ¼ 1

4C

� �1=6
3p

Kð1=2Þ

� �1=3

ð3Þ
where Kð1=2Þ is the complete elliptic integral of the first kind with modulus 1/2.

A numerical computation based on a two-DOF chain ðN ¼ 2Þ demonstrates some important issues of

the chain–attachment interaction. In Fig. 1 we depict the transient responses and the approximate

instantaneous frequency XðtÞ of the nonlinear oscillator for a system with parameters a ¼ 1, x0 ¼ 1, b ¼ 2,
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C ¼ 3 and e ¼ 0:1. We used zero initial conditions except for _u1ð0Þ ¼ Y ; these initial conditions correspond
to impulsive excitation at t ¼ 0 of the farthest from the attachment oscillator 1. For Y ¼ 5:6 no significant

nonlinear interaction between the chain and the attachment takes place, and most of the induced energy of

vibration remains in the linear part of the system, where it is originally generated. However, by increasing
the initial condition to Y ¼ 8:6 strong energy transfer to the nonlinear attachment is observed.

The enhanced nonlinear interaction as energy increases can be better understood by considering the plots

of Fig. 1d, depicting the variation of the instantaneous frequency XðtÞ of the nonlinear attachment for the

two aforementioned cases of impulsive excitation. Indeed, for the lower level excitation XðtÞ does not reach
the neighbourhood of the natural frequencies of the linear chain, and, as a result no resonance interaction

(capture) between the attachment and the chain can occur. By contrast, for the case of higher impulsive

excitation the instantaneous frequency of the nonlinear oscillator reaches the neighborhood of the smallest

natural frequency x1 of the linear chain giving rise to 1:1 resonance capture (Vakakis and Gendelman,
2001). By this we mean the transient internal resonance between the attachment and the chain in a small

neighborhood of a 1:1 resonant manifold of the dynamics (Arnold, 1988; Quinn, 1997, 2002). Hence, the

nonlinear attachment engages in a 1:1 transient resonance interaction with the lowest mode of the linear

chain, during which one-way transfer (pumping) of energy to the attachment takes place.

By increasing the magnitude of the impulse to Y ¼ 25, there occurs a resonance capture cascade,

whereby the attachment transiently resonates with both modes of the linear chain in sequential order. This

can be concluded from the frequency plot of Fig. 2, where it is seen that the instantaneous frequency XðtÞ of
the nonlinear oscillator first reaches the neighbourhood of the natural frequency of the higher, anti-phase
mode of the linear chain, and then makes the transition to the neighbourhood of the natural frequency of

the lower, in-phase mode. Damping dissipation is the mechanism that reduces continuously the overall

energy of the system and induces the frequency transitions. After the resonance capture cascade the

frequency fluctuates about a small mean value, and decays to zero as energy diminishes. The resonance

capture cascade and the low energy behaviour of the instantaneous frequency will be analyzed in the next

section.
3. Analytical treatment of transient resonance interactions

We now perform an analytic investigation of the transient resonant interactions of the nonlinear

attachment with the modes of the linear chain. First, we consider the chain and consider the force exerted

by the coupling stiffness to be a pseudo-forcing term. The equations of motion for the N particles of chain
are given by:
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Fig. 2. Instantaneous frequency XðtÞ of the two-DOF system for Y ¼ 25.
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€u1 þ u1ðx2
0 þ 2aÞ � au2 ¼ 0

€un þ unðx2
0 þ 2aÞ � aðunþ1 � un�1Þ ¼ 0; n ¼ 2; 3; . . . ;N � 1

€uN þ uN ðx2
0 þ aþ eÞ � auN�1 ¼ ev

ð4Þ
Later we will consider separately the nonlinear differential equation governing the motion of the non-
linear attachment. Due to its linear structure, system (4) can be placed in the following matrix form:
I€uþ Ku ¼ f ðtÞ; uðtÞ 2 RN ð5Þ

with initial conditions uð0Þ and _uð0Þ. Variables in capitals denote N � N matrices, whereas variables in

lowercase denote N � 1 vectors; I is the N � N unit matrix, and the N � 1 pseudo-force vector is given by

f ðtÞ ¼ ½ 000 � � � 0 evðtÞ �T.
To solve system (5), we express the displacement vector in the series form,
uðtÞ ¼
XN
i¼1

qiðtÞui ð6Þ
where qiðtÞ are modal amplitudes, and ui, i ¼ 1; . . . ;N , are is the mass-normalized, mutually orthogonal

eigenvectors of the stiffness matrix K of the linear chain with associated eigenvalues x2
i . The eigensolutions

satisfy the well known conditions,
uT
i uj ¼ dij; uT

i Kuj ¼ x2
i dij ð7Þ
where dij is the Kronecker delta. Substituting (6) into (5), pre-multiplying by uT
i , and utilizing (7) we obtain

the following N decoupled equations governing the unknown functions qiðtÞ:

€qi þ x2

i qi ¼ uT
i f ðtÞ ¼ eui;NvðtÞ; i ¼ 1; . . . ;N ð8Þ
where ui;N denotes the N -component of the ith eigenvector ui. The solution to each decoupled equation of

the set (8) is expressed as,
qiðtÞ ¼ qið0Þ cosðxitÞ þ
_qið0Þ
xi

sinðxitÞ þ e
ui;N

xi

Z t

0

vðkÞ sinxiðt � kÞdk; i ¼ 1; . . . ;N ð9Þ
The initial conditions qið0Þ, _qið0Þ are determined by,
qið0Þ ¼ uT
i uð0Þ ¼

XN
k¼1

ui;kukð0Þ; _qið0Þ ¼ uT
i _uð0Þ ¼

XN
k¼1

ui;k _ukð0Þ; i ¼ 1; . . . ;N ð10Þ
where ui;k denotes the k-component of ith eigenvector ui and ukð0Þ, _ukð0Þ denote the physical initial con-

ditions.

Combining these results we express the displacement of lth particle of the chain by the following series
expression, where the response of the nonlinear attachment appears as a pseudo-forcing term in the integral

on the right hand side:
ulðtÞ ¼
XN
i¼1

XN
k¼1

ui;lui;kukð0Þ cosðxitÞ þ
XN
i¼1

XN
k¼1

ui;lui;k _ukð0Þ
xi

sinðxitÞ

þ e
XN
i¼1

ui;lui;N

xi

Z t

0

vðkÞ sinxiðt � kÞdk; l ¼ 1; . . . ;N ð11Þ
As a final step, we express uN ðtÞ through (11) and substitute it into the last of the set of Eqs. (1). We then
obtain a single essentially nonlinear, damped integro-differential equation that governs exactly the transient

dynamics of the nonlinear attachment:
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€vþ Cv3 þ eb _vþ ev ¼ e
XN
i¼1

XN
k¼1

/i;N/i;kukð0Þ cosðxitÞ þ e
XN
i¼1

XN
k¼1

/i;N/i;k _ukð0Þ
xi

sinðxitÞ

þ e2
XN
i¼1

/i;N/i;N

xi

Z t

0

vðkÞ sinxiðt � kÞdk ð12aÞ
This equation is solved with initial conditions vð0Þ and _vð0Þ. Hence, we have reduced the problem of

nonlinear interaction of the chain with the nonlinear attachment to a single integro-differential equation.

The first two terms on the right hand side represent the influence of the initial condition of the chain on the

motion of the attachment; these are mere nonhomogeneous terms that do not pose any challenges from an

analysis point of view. The summation term containing the integrals, however, models the interaction of the
nonlinear attachment with the linear chain, including energy transfer into the attachment, and scattering of

incoming waves from the nonlinear attachment, resulting in radiation of energy from the attachment back

to the chain. To better understand the meaning of the integrals in that term, we performed a series of

numerical simulations with (12) considering all initial energy in the nonlinear attachment [this amounted to

setting ukð0Þ ¼ _ukð0Þ ¼ 0, k ¼ 1; . . . ;N and considering nonzero initial conditions for the attachment]. For

this type of initial conditions the integrals model radiation of energy from the attachment to the chain.

As an example, in Fig. 3 we depict the response of instantaneous frequency XðtÞ of the nonlinear

oscillator, together with the integrals,
Yci ¼
Z t

0

vðkÞ cosðxikÞdk and Ysi ¼
Z t

0

vðkÞ sinðxikÞdk; i ¼ 1; 2 ð12bÞ
for a two-DOF linear chain with a nonlinear attachment at its end; the parameters were assigned the values

a ¼ 1, e ¼ 0:01, x0 ¼ 1, C ¼ 3, b ¼ 1, and initial conditions u1ð0Þ ¼ 0, u2ð0Þ ¼ 0, vð0Þ ¼ 1:5, _u1ð0Þ ¼ 0,
_u2ð0Þ ¼ 0 and _vð0Þ ¼ 0. In this system a resonance capture cascade occurs, and the nonlinear attachment

engages in resonance capture with both linearized modes in sequential order. We note that as instantaneous

frequency XðtÞ approaches the neighborhood of each linearized natural frequency of the chain, the mean

value of integrals corresponding to that natural frequency show large variations. This indicates that in the
initial phase of the motion when the energy of the system is relatively high, the radiation of energy from

the attachment to the linear chain excites the linearized modes in sequential order from high to low. As the

energy of the nonlinear oscillator decreases due to radiation, so does its instantaneous frequency of

oscillation, and the integrals cease to vary, reaching steady values. Hence, the nonlinear interaction of the

attachment with the linearized modes of the chain can be traced in the behaviors of the integrals that

characterize energy radiation from the attachment to the chain.

To analyze resonance capture and energy pumping from the N-DOF chain to the attachment, we

transform the nonlinear integro-differential equation (12a) into a set of two first order nonlinear integro-
differential equations that govern the time evolution of the amplitude and phase of the motion of the

attachment. For this purpose we consider (12a) to be in the form of a nonhomogeneous nonlinear differ-

ential equation (13) in order to apply the method of variation of parameters to express its solution,
€vþ Cv3 ¼ ef ðt; eÞ ð13aÞ

where,
f ðt; eÞ � �v� b _vþ
XN
i¼1

XN
k¼1

/i;N/i;kukð0Þ cosðxitÞ þ
XN
i¼1

XN
k¼1

/i;N/i;k _ukð0Þ
xi

sinðxitÞ

þ e
XN
i¼1

/i;N/i;N

xi

Z t

0

vðkÞ sinxiðt � kÞdk ð13bÞ



100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

0.5

1

1.5

2

2.5

3

3.5

4

t

(a) 

-10

- 5

5

10

15

20

(b) 

—5

5

7.5

2.5

—2.5

10

(c) 

t

t

1

2

Exitation of mode 2

Exitation of mode 1

Exitation of mode 1

Exitation of mode 2     

Ω (t)

ω

ω

Ys1, Ys2

Yc1, Yc2

Fig. 3. Radiation of energy from the nonlinear attachment to a 2-DOF linear system with x1 < x2: (a) frequency XðtÞ of the

attachment; (b) integrals Yc2 ( – ); Yc1 (- - -); (c) integrals Ys2 ( – ); Ys1 (- - -).

P.N. Panagopoulos et al. / International Journal of Solids and Structures 41 (2004) 6505–6528 6511
We first consider the solution of the homogeneous problem,
€vþ Cv3 ¼ 0 ) vðtÞ ¼ Acn½A
ffiffiffiffi
C

p
t þ 4Kð1=

ffiffiffi
2

p
Þn; 1=

ffiffiffi
2

p
� ð14Þ
where A and n denote arbitrary constants, and Kð1=
ffiffiffi
2

p
Þ is the elliptic integral of the first kind.

Applying an ‘elliptic’ version of the method of variation of parameters (Barkham and Soudack, 1969,

1970; Coppola and Rand, 1990; Vakakis and Rand, 2004), we seek the solution of the inhomogeneous
differential equation (13a) in the form,
vðtÞ ¼ AðtÞcnðAðtÞ
ffiffiffiffi
C

p
t þ 4KnðtÞ; kÞ ð15Þ
where AðtÞ and nðtÞ are new unknown, slowly varying amplitude and phase functions, respectively. For

simplicity the dependence of the variables v, A and n on the small variable e is not explicitly depicted in Eq.
(15).
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In writing (15) we partition, in essence, the dynamics into fast and slow varying components, at the

original time-scale t and at a time scale eat (a > 0 to be determined), respectively. The plan is to average out

the fast dynamics, and to confine the analysis to the slowly varying dynamics (the slow flow) where

information on the attachment-chain nonlinear interaction is contained. The slowly varying amplitude and
phase functions are governed by a set of slow flow modulation equations, which according to the method of

variation of parameters are expressed as follows:
dA
dt

cnðu; kÞ þ dn
dt

4KAðtÞcn0ðu; kÞ ¼ 0

dA
dt

2AðtÞcn0ðu; kÞ � dn
dt

4KðAðtÞÞ2ðcnðu; kÞÞ3 ¼ ef ðt; eÞffiffiffiffi
C

p
ð16Þ
where,
cn0ðu; kÞ � ocnðu; kÞ
ou

; and uðtÞ � AðtÞ
ffiffiffiffi
C

p
t þ 4KnðtÞ
Solving this system in terms of the derivatives of the amplitude and phase functions, we obtain the

following set of modulation equations:
dA
dt

¼ e
cn0

A
ffiffiffiffi
C

p f ðt; eÞ

dn
dt

¼ �e
cn

4KA2
ffiffiffiffi
C

p f ðt; eÞ
ð17Þ
We note that both derivatives are of OðeÞ, indicating that indeed the amplitude and the phase are slowly

varying functions.

Substituting (13b) into (17) we obtain the explicit form of the modulation equations of the slow flow:
dA
dt

¼ e
cn0

A
ffiffiffiffi
C

p
�
� AðtÞcnðA

ffiffiffiffi
C

p
t þ 4KnðtÞ; kÞ � b

d

dt
AðtÞcnðA

ffiffiffiffi
C

p
t

h
þ 4KnðtÞ; kÞ

i

þ
XN
i¼1

XN
k¼1

/i;N/i;kukð0Þ cosðxitÞ þ
XN
i¼1

XN
k¼1

/i;N/i;k _ukð0Þ
xi

sinðxitÞ

þ e
XN
i¼1

/i;N/i;N

xi

Z t

0

AðkÞcnðA
ffiffiffiffi
C

p
kþ 4KnðkÞ; kÞ sinxiðt � kÞdk

�
ð18aÞ

dn
dt

¼ �e
cn

4KA2
ffiffiffiffi
C

p
�
� AðtÞcnðA

ffiffiffiffi
C

p
t þ 4KnðtÞ; kÞ � b

d

dt
AðtÞcnðA

ffiffiffiffi
C

p
t

h
þ 4KnðtÞ; kÞ

i

þ
XN
i¼1

XN
k¼1

/i;N/i;kukð0Þ cosðxitÞ þ
XN
i¼1

XN
k¼1

/i;N/i;k _ukð0Þ
xi

sinðxitÞ

þ e
XN
i¼1

/i;N/i;N

xi

Z t

0

AðkÞcnðA
ffiffiffiffi
C

p
kþ 4KnðkÞ; kÞ sinxiðt � kÞdk

�
ð18bÞ
Assuming that the exact response of nonlinear attachment is taken into account, in the form

vðtÞ ¼ AðtÞcnðAðtÞ
ffiffiffiffi
C

p
t þ 4KnðtÞ; 1=

ffiffiffi
2

p
Þ, Eqs. (18) provide the exact time evolution of the amplitude and

phase of the motion of the nonlinear oscillator. However, since the exact analysis of the modulation Eqs.
(18) is not possible, we resort to approximations in order to analytically study the nonlinear interaction of

the attachment and the chain.
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We simplify the problem by using the following Fourier expansion for the elliptic cosine,
cnð2Kh=pÞ ¼ 0:955 cos hþ 0:043 cos 3hþ � � � ffi cos h ð19Þ

and approximating the response of the nonlinear attachment by,
vðtÞ ¼ AðtÞ cos hðtÞ ð20Þ

where the angle variable is defined as,
hðtÞ ¼ p
ffiffiffiffi
C

p

2K
AðtÞt þ 2pnðtÞ
Expressing the modulation Eqs. (17) using the approximation (19) and the new angle variable, we obtain

the following approximate modulation equations governing the slow flow of the system:
dA
dt

¼ �e
p sin hðtÞ
2KAðtÞ

ffiffiffiffi
C

p f ðt; eÞ

dh
dt

¼ p
ffiffiffiffi
C

p
AðtÞ

2K
� e

p cos hðtÞ
2KðAðtÞ2Þ

ffiffiffiffi
C

p f ðt; eÞ
ð21Þ
Taking into account the expression (13b) for f ðtÞ, and approximating the velocity of the nonlinear

attachment by the expressions,
dv
dt

¼ dA
dt

cos h� A sin h
dh
dt

) dv
dt

¼ � p
ffiffiffiffi
C

p
A2ðtÞ

2K
sin h ð22Þ
we obtain the following approximate set of modulation equations governing the slow flow of the chain–

nonlinear attachment interaction:
dA
dt

¼ e
p

2K
ffiffiffiffi
C

p cos hðtÞ sin hðtÞ � e
bp2AðtÞ
4K2

sin2 hðtÞ

� e
p

2KAðtÞ
ffiffiffiffi
C

p sin hðtÞ
XN
i¼1

XN
k¼1

/i;N/i;kukð0Þ cosðxitÞ

� e
p

2KAðtÞ
ffiffiffiffi
C

p sin hðtÞ
XN
i¼1

XN
k¼1

/i;N/i;k _ukð0Þ
xi

sinðxitÞ

� e2
p

2KAðtÞ
ffiffiffiffi
C

p sin hðtÞ
XN
i¼1

/i;N/i;N

xi

Z t

0

AðkÞ cos hðkÞ sinxiðt � kÞdkþ Oðe3Þ

ð23aÞ
and,
dh
dt

¼ pAðtÞ
ffiffiffiffi
C

p

2K
þ e

p

2KAðtÞ
ffiffiffiffi
C

p cos2 hðtÞ � e
bp2

4K2
cos hðtÞ sin hðtÞ

� e
p

2KðAðtÞÞ2
ffiffiffiffi
C

p cos hðtÞ
XN
i¼1

XN
k¼1

/i;N/i;kukð0Þ cosðxitÞ

� e
p

2KðAðtÞÞ2
ffiffiffiffi
C

p cos hðtÞ
XN
i¼1

XN
k¼1

/i;N/i;k _ukð0Þ
xi

sinðxitÞ

� e2
p

2KðAðtÞÞ2
ffiffiffiffi
C

p cos hðtÞ
XN
i¼1

/i;N/i;N

xi

Z t

0

AðkÞ cos hðkÞ sinxiðt � kÞdkþ Oðe3Þ

ð23bÞ
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From (23a) and (23b) it directly follows that dA
dt is of order OðeÞ and dh

dt is of order Oð1Þ. The modulation

equations approximately govern the amplitude and phase of the nonlinear attachment as it interacts with

the modes of the linear chain. We stress that since we omitted terms of Oðe3Þ from (23), it is expected that

their (transient) solutions will be valid only up to times of Oð1=e2Þ. We first establish the accuracy of the
approximate modulation equations by computing the response of the attachment by (20), and comparing it

to direct numerical simulations of the original equations of motion (1). For this comparison we employ a

two-DOF linear chain ðN ¼ 2Þ with a nonlinear attachment at its end, and parameters a ¼ 1, x0 ¼ 1, b ¼ 2,

C ¼ 3, e ¼ 0:1; all initial conditions were taken as zero, with the exception _u1ð0Þ ¼ u. In Fig. 4 we depict the

comparison between the approximation (20) and direct numerical simulation for the transient response of

the attachment vðtÞ during or in the absence of energy pumping. Satisfactory agreement between the two

responses is noted at least up to times of Oð1=0:12Þ ¼ Oð100Þ; in fact for t > 100 a clear divergence between

the exact and approximate results is observed in Fig. 4a, attributed to the fact that the approximate
modulation equations (23) are correct only up to Oðe2Þ.

In Fig. 5 the approximate amplitude AðtÞ and phase yðtÞ ¼ hðtÞ � x1t (where x1 is the lower natural

frequency of the linear chain) are depicted for a system with initial conditions zero except _u1ð0Þ ¼ u. Direct

numerical simulations established that for u ¼ 8:6 resonance capture occurs in this system (see Fig. 1d). The

same conclusion is reached by studying the approximate results of Fig. 5, where for u ¼ 8:6 resonance

capture with the first linearized mode of the chain close to the lowest linearized natural frequency x1 is

established, leading to nonlinear energy pumping from the chain to the attachment; this is evidenced by the

increased magnitude of the approximate amplitude AðtÞ in the initial phase of the motion. Of interest is to
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examine the transient evolution of the phase difference yðtÞ for the case when resonance capture (and energy

pumping) occurs (u ¼ 8:6, Fig. 5b). We divide the evolution of yðtÞ into three phases. In the first phase when

resonance capture occurs there is a small-amplitude fast oscillation of yðtÞ about a slowly-varying mean,

indicating that when resonance capture occurs in the neighborhood of a natural frequency, there occurs a

slow variation of the phase of the nonlinear attachment in the neighborhood of the linearized natural

frequency of the resonant mode. In the second phase a rapid transition of yðtÞ occurs away from the

resonant natural frequency, and in third phase yðtÞ is observed to perform small-amplitude oscillations
about a small mean value. A perturbation analysis carried out in the Appendix A proves that in the third

phase of the response the nonlinear attachment oscillates with a frequency equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1� eb2=4Þ

q
and

effective damping ratio equal to f ¼ be=2. This result is consistent with the numerical instantaneous

frequency simulation depicted in Fig. 2, where for sufficiently large times the frequency of the nonlinear

attachment oscillates about a small mean value of Oð
ffiffi
e

p
Þ ¼ Oð0:316Þ; the inability of the frequency plot of

Fig. 5 to capture the correct frequency trend for large times is attributed to the previously discussed lack of
validity of the approximate modulation equations (23) for large times.

Eqs. (23a) and (23b) together with Eq. (20) can be used to get insight into the dynamics of resonance

capture and energy pumping. In particular, we wish to study the behavior of the integrals on the right-hand

sides of expressions (23a) and (23b), which, as mentioned previously, model the interaction of the nonlinear

attachment with the chain, including radiation of energy from the attachment back to the chain. All these

integrals can be expressed in terms of the integrals Yci and Ysi defined by expressions (12b). Focusing in the

region where resonance capture by mode 1 occurs (a similar analysis can be carried out for resonance

capture by mode 2), it approximately holds that _h � x1. It follows from (20) that in that region the
displacement of the nonlinear attachment can be approximated by,
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vðtÞ � A1ðtÞ cosðx1t þ c1ðtÞÞ ðresonance capture by mode 1Þ ð24Þ

where A1ðtÞ and c1ðtÞ represent slowly varying amplitude and phase, which over the resonance capture

region can be treated as being nearly constant. Substituting this approximation into the expression for the

integral Yci (similarly we treat Ysi) we obtain the following approximation:
Yci �
Z t

0

A1ðkÞ cosðx1kþ c1ðtÞÞ cosðxikÞdk ð25Þ
Considering A1ðtÞ and c1ðtÞ to be nearly constant, and using trigonometric identities, we may approxi-
mately express (25) as follows:
Yci � G1ðk; c1Þ
Z t

0

cosðx1kÞ cosðxikÞdkþ G2ðk; c1Þ
Z t

0

sinðx1kÞ cosðxikÞdk ð26Þ
where Giðk; c1Þ are slowly varying functions of time. Using trigonometric identities we write (26) in the

form:
Yci � G1ðk; c1Þ
sinðx1 � xiÞt
2ðx1 � xiÞ

�
þ sinðx1 þ xiÞt

2ðx1 þ xiÞ

�
þ G2ðk; c1Þ

1� cosðx1 � xiÞt
2ðx1 � xiÞ

�
� 1� cosðx1 þ xiÞt

2ðx1 þ xiÞ

�
ð27Þ
It follows that if i 6¼ 1 the integral Yci performs low amplitude oscillations, whereas if i ¼ 1 Yci undergoes
large time rate variations. Similar conclusions hold for the integral Ysi. These results indicate that in the

resonance capture region involving a certain mode of the linear chain, the attachment interacts strongly

with that mode mainly through the scattering integrals in (23a) and (23b) which attain large rates of time

variation; it is through such resonance interactions that energy pumping from the chain to the attachment

takes place (Vakakis and Rand, 2004).
It is, therefore, of interest to study in more detail the set of modulation equations (23a) and (23b) in the

region of resonance capture by imposing certain restrictions and assumptions on the slowly varying vari-

ables, thus focusing in the nonlinear interaction of the attachment with the chain. This is performed in the

next Section where resort to local asymptotic analysis in the neighbourhood of the resonance capture region

is carried out. The analysis follows resembles the asymptotic technique used in (Vakakis and Gendelman,

2001) where resonance capture interaction was studied by resorting to action-angle transformations. In the

present work, however, the analysis is applied on the modulation equations of the slow flow, and results are

sought in higher orders of approximation.
4. Analysis of resonance capture in the neighborhood of a resonance manifold

Our previews findings confirm that resonance capture (and energy pumping from the chain to the

nonlinear attachment) in the dynamical system (1) occurs in the neighborhood of a 1:1 resonance manifold

of the system, e.g., when the instantaneous frequency of the nonlinear attachment is close to one of the

eigenfrequencies of the linear chain. Motivated by the above observations, we focus on the specific example
of a two-DOF system composed of one linear oscillator weakly coupled to a weakly damped, strongly

nonlinear oscillator, with parameters a ¼ 1, x0 ¼ 1, b ¼ 2, C ¼ 3, e ¼ 0:1 and zero initial values except for

the velocity of the linear oscillator _uð0Þ ¼ u:
€uþ uðx2
0 þ aþ eÞ � ev ¼ 0

€vþ Cv3 þ eb _vþ eðv� uÞ ¼ 0
ð28Þ
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We note that this by no means restricts the generality of the analysis, since resonance capture of the

attachment with an arbitrary mode of an N-DOF linear chain can be reduced to the two-DOF interaction

considered herein (Vakakis et al., 2003).

We will perform a local analysis by restricting the dynamics in an Oð
ffiffi
e

p
Þ neighborhood of a 1:1 reso-

nance manifold (Vakakis and Gendelman, 2001). To study the dynamics in the boundary layer close to this

manifold we introduce the combination phase variable
wðtÞ ¼ hðtÞ � xt ð29Þ

where x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ eþ x2

0

p
, and the following amplitude transformation:
AðtÞ ¼ Rþ
ffiffi
e

p
aðtÞ ð30Þ
where R ¼ 2Kxðp
ffiffiffiffi
C

p
Þ�1

. Substituting (29) and (30) into (23a) and (23b) with N ¼ 1, using trigonometric

identities and performing algebraic manipulations we obtain the following differential system of equations

with respect to aðtÞ and wðtÞ:

da
dt

¼
ffiffi
e

p p

4K
ffiffiffiffi
C

p sin 2ðwþ xtÞ �
ffiffi
e

p p2b½Rþ
ffiffi
e

p
aðtÞ�

8K2
þ

ffiffi
e

p p2b½Rþ
ffiffi
e

p
aðtÞ�

8K2
cos 2ðwþ xtÞ

�
ffiffi
e

p pu

4K
ffiffiffiffi
C

p
x½Rþ

ffiffi
e

p
aðtÞ�

coswþ
ffiffi
e

p pu

4K
ffiffiffiffi
C

p
x½Rþ

ffiffi
e

p
aðtÞ�

sinðwþ 2xtÞ

� e3=2
p sinðwþ xtÞ

2K
ffiffiffiffi
C

p
x½Rþ

ffiffi
e

p
aðtÞ�

Z t

0

½Rþ
ffiffi
e

p
aðkÞ� cosðwðkÞ þ xkÞ sinxiðt � kÞdk ð31aÞ
and,
dw
dt

¼
ffiffi
e

p paðtÞ
ffiffiffiffi
C

p

2K
þ e

p

4K½Rþ
ffiffi
e

p
aðtÞ�

ffiffiffiffi
C

p þ e
p

4K½Rþ
ffiffi
e

p
aðtÞ�

ffiffiffiffi
C

p cos 2ðwþ xtÞ � e
p2b
8K2

sin 2ðwþ xtÞ

þ e
pu

4K½Rþ
ffiffi
e

p
aðtÞ�2

ffiffiffiffi
C

p
x

sinw� e
pu

4K½Rþ
ffiffi
e

p
aðtÞ�2

ffiffiffiffi
C

p
x

sinðwþ 2xtÞ

� e3=2
p cosðwþ xtÞ

2K
ffiffiffiffi
C

p
x½Rþ

ffiffi
e

p
aðtÞ�2

Z t

0

½Rþ
ffiffi
e

p
aðkÞ� cosðwðkÞ þ xkÞ sinxiðt � kÞdk ð31bÞ
In contrast to (23a) and (23b) which is a global model of the slow dynamics, the set (31a) and (31b)

represents a local model of the slow dynamics since it is valid only in an Oð
ffiffi
e

p
Þ neighborhood of the 1:1

resonance manifold. As such it is applicable only for the study of the resonance capture interaction between

the linear and nonlinear oscillators, in contrast to the model (31a) and (31b) that models the slow flow
dynamics for all phases of the motion.

Applying the method of multiple scales to study the local model, we replace the independent time

variable with two ‘super-slow’ and ‘slow’ variables (since we are dealing with the local model of the slow

flow) defined as, T1 ¼
ffiffi
e

p
t and T0 ¼ t, respectively. We note that the following local analysis represents a

further (super-slow) asymptotic analysis within the slow flow dynamics defined by the modulation equa-

tions (31a) and (31b). The dependent variables aðtÞ and wðtÞ are expressed in the following series forms in

terms of the slow and super-slow time-scales:
a ¼ a0ðT0; T1Þ þ
ffiffi
e

p
a1ðT0; T1Þ þ ea2ðT0; T1Þ þ Oðe3=2Þ

w ¼ w0ðT0; T1Þ þ
ffiffi
e

p
w1ðT0; T1Þ þ ew2ðT0; T1Þ þ Oðe3=2Þ

ð32Þ
Substituting into (31a) and (31b), and balancing the coefficients of the same order of e we obtain an
hierarchy of subproblems at increasing orders of approximation. In what follows we examine leading order

subproblems.
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4.1. Oð1Þ approximations

The subproblems of zero-order approximations can be trivially solved:
oa0
oT0

¼ 0 ) a0ðT0; T1Þ ¼ a0ðT1Þ

ow0

oT0
¼ 0 ) w0ðT0; T1Þ ¼ w0ðT1Þ

ð33Þ
where the functions a0 and w0 are computed by solving the next order of approximation.

4.2. Oðe1=2Þ approximations

The subproblems governing the first-order approximations are given by:
oa1
oT0

þ oa0
oT1

¼ p

4K
ffiffiffiffi
C

p sin 2ðw0 þ xT0Þ �
p2bR
8K2

þ p2bR
8K2

cos 2ðw0 þ xT0Þ

� pu

4KR
ffiffiffiffi
C

p
x

cosw0 þ
pu

4KR
ffiffiffiffi
C

p
x

sinðw0 þ 2xT0Þ
ow1

oT0
þ ow0

oT1
¼ pa0

ffiffiffiffi
C

p

2K
ð34Þ
Taking into account (33), and eliminating secular terms (i.e., terms on the right-hand side that depend

only on the super-slow time-scale T1), we obtain the following solvability relations that govern the unknown

functions of the previous order of approximation:
oa0
oT1

¼ � p2bR
8K2

� pu

4KR
ffiffiffiffi
C

p
x

cosw0

ow0

oT1
¼ pa0

ffiffiffiffi
C

p

2K

ð35Þ
Differentiating the second of the above relations with respect to T1 and combining the two equations into

a single second-order one, we obtain an equation in the form of a forced pendulum with constant torque,
o2w0

oT 2
1

þM cosw0 ¼ �N ð36Þ
where,
M ¼ p2u
8K2Rx

and N ¼ p3
ffiffiffiffi
C

p
bR

16K3
Eq. (36) provides the leading order analytical approximation to the super-slow flow in the resonance
capture regime, since it is governed by the super-slow independent time variable T1. Depending on the

relative values of M and N, the phase portrait of (36) possess (if M > N ), or does not possess (if M 6N ) a

closed homoclinic loop containing closed super-slow periodic orbits surrounding a stable equilibrium point.

This closed loop represents the leading order approximation to the resonance capture domain, e.g., to the

set of initial conditions that lead to resonance capture.

When perturbed by higher order terms this domain becomes the attracting region responsible for sus-

tained resonance capture in the dynamical system: for certain initial conditions, trajectories of the system in

an Oð
ffiffi
e

p
Þ neighborhood of the 1:1 resonance manifold get attracted to the region of the loop where they

perform multiple oscillations around the attractor. Under other initial conditions trajectories lie outside the

homoclinic loop and get repelled away from the attracting region; in this case no resonance capture occurs.
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Note that sustained resonance capture is only possible if M > N , which leads to the following approxi-

mation to lower value for initial velocity of linear oscillator required for sustained resonance capture:
u >
2Kbx3

p
ffiffiffiffi
C

p

This relation indicates that for resonance capture to occur the initial velocity of the directly excited linear

oscillator must be above a certain threshold, or equivalently, that the input energy must be above a certain

critical threshold. This is in accordance with the conclusions of previous sections (but see also Vakakis and

Gendelman, 2001; Quinn, 2002; Vakakis et al., 2003).

After eliminating the secular terms in (34) by means of (35), the Oð
ffiffi
e

p
Þ approximations to the super-slow

flow are computed as follows,
a1ðT0; T1Þ ¼ � p

8K
ffiffiffiffi
C

p
x

cos½2ðw0 þ xT0Þ� þ
p2bR
16K2x

sin½2ðw0 þ xT0Þ�

� pu

8KR
ffiffiffiffi
C

p
x2

cosðw0 þ 2xT0Þ þ a
_ðT1Þ

w1 ¼ w1ðT1Þ

ð37Þ
where a
_ðT1Þ and w1ðT1Þ denote (yet undetermined) functions of T1 that result as constants of integration.

The new undetermined functions in (37) are computed by eliminating secular terms at the next order of

approximation.

4.3. OðeÞ approximations

The subproblems governing the second-order approximations are given by:
oa2
oT0

þ oa1
oT1

¼ pw1

2K
ffiffiffiffi
C

p cos½2ðw0 þ xT0Þ� �
p2ba0
8K2

þ p2ba0
8K2

cos½2ðw0 þ xT0Þ� �
p2bRw1

4K2
sin½2ðw0 þ xT0Þ�

þ pua0
4KR2

ffiffiffiffi
C

p
x

cosw0 þ
puw1

4KR
ffiffiffiffi
C

p
x

sinw0 þ
puw1

4KR
ffiffiffiffi
C

p
x

cosðw0 þ 2xT0Þ

� pua0
4KR2

ffiffiffiffi
C

p
x

sinðw0 þ 2xT0Þ

ow2

oT0
þ ow1

oT1
¼ p

4KR
ffiffiffiffi
C

p þ p

4KR
ffiffiffiffi
C

p cos½2ðw0 þ xT0Þ� �
p2b
8K2

sin½2ðw0 þ xT0Þ�

þ pu

4KR2
ffiffiffiffi
C

p
x

sinw0 �
pu

4KR2
ffiffiffiffi
C

p
x

sinðw0 þ 2xT0Þ þ
pa1

ffiffiffiffi
C

p

2K
ð38Þ
Substituting the first of relations (37) into (38), we obtain the following relations:
oa2
oT0

þ oa1
_

oT1
¼ � p

4K
ffiffiffiffi
C

p
x

sin½2ðw0

�
þxT0Þ� þ

p2bR
8K2x

cos½2ðw0 þxT0Þ� þ
pu

4KR
ffiffiffiffi
C

p
x2

sinðw0 þ 2xT0Þ
�
ow0

oT1

þ pw1

2K
ffiffiffiffi
C

p cos½2ðw0 þxT0Þ� �
p2ba0
8K2

þ p2ba0
8K2

cos½2ðw0 þxT0Þ� �
p2bRw1

4K2
sin½2ðw0 þxT0Þ�

þ pua0
4KR2

ffiffiffiffi
C

p
x

cosw0 þ
puw1

4KR
ffiffiffiffi
C

p
x

sinw0 þ
puw1

4KR
ffiffiffiffi
C

p
x

cosðw0 þ 2xT0Þ

� pua0
4KR2

ffiffiffiffi
C

p
x

sinðw0 þ 2xT0Þ ð39aÞ
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ow2

oT0
þ ow1

oT1
¼ p

4KR
ffiffiffiffi
C

p þ p

4KR
ffiffiffiffi
C

p cos½2ðw0 þ xT0Þ� �
p2b
8K2

sin½2ðw0 þ xT0Þ� þ
pu

4KR2
ffiffiffiffi
C

p
x

sinw0

� pu

4KR2
ffiffiffiffi
C

p
x

sinðw0 þ 2xT0Þ þ
p
ffiffiffiffi
C

p

2K

�
� p

8K
ffiffiffiffi
C

p
x

cos½2ðw0 þ xT0Þ�

þ p2bR
16K2x

sin½2ðw0 þ xT0Þ� �
pu

4KR
ffiffiffiffi
C

p
x2

cosðw0 þ 2xT0Þ
�
þ p

ffiffiffiffi
C

p
a1
_

2K
ð39bÞ
Eliminating secular terms on the right-hand-side that depend only on the super-slow variable T1, we
obtain the following equations:
oa1
_

oT1
¼ � p2ba0

8K2
þ pua0
4KR2

ffiffiffiffi
C

p
x

cosw0 þ
puw1

4KR
ffiffiffiffi
C

p
x

sinw0

ow1

oT1
¼ p

4KR
ffiffiffiffi
C

p þ pu

4KR2
ffiffiffiffi
C

p
x

sinw0 þ
p
ffiffiffiffi
C

p
a1
_

2K

ð40Þ
Differentiating the second of the above relations with respect to T1, and combining the two equations

into a single second-order one we obtain a nonhomogeneous linear equation with a parameter-dependent

coefficient:
o2w1

oT 2
1

� p2u
8K2Rx

w1 sinw0 ¼ � p3
ffiffiffiffi
C

p
ba0ðT1Þ

16K3
ð41Þ
Introducing the scaled independent super-slow variable s ¼
ffiffiffiffiffi
h1

p
T1, and defining the quantities,
h1 ¼
p2u

8K2Rx
; h2 ¼

p3
ffiffiffiffi
C

p
bR

16K3
; and a0ðT1Þ ¼ ~a0ðsÞ ¼

2K
ffiffiffiffiffi
h1

p

p
ffiffiffiffi
C

p ow0

os
;

Eq. (41) becomes,
o2w1

os2
� w1 sinw0 ¼ � h2~a0ðsÞ

h1R
ð42Þ
where wi ¼ wiðsÞ. This equation provides a correction to the leading order approximation (36) of the super-

slow flow. It turns out that due to its linear structure this equation can be solved analytically.
One homogeneous solution of (42) is given by:
wð1hÞ
1 ¼ � ow0

os
ð43aÞ
A second linearly independent homogeneous solution can be obtained by considering the equation for

the Wroskian of (42), leading to the following analytical expression:
wð2hÞ
1 ¼ wð1hÞ

1 ðsÞ
Z s

dzwð1hÞ
1 ðzÞ��2 ð43bÞ
These two linearly independent homogeneous solutions are used to compute a particular integral by the

method of variation of parameters which completes the solution:
w1ðsÞ ¼ c

�
� h22Kffiffiffiffiffi

h1
p

Rp
ffiffiffiffi
C

p
Z s

wð1hÞ
1 ðzÞwð2hÞ

1 ðzÞdz
�
wð1hÞ

1 ðsÞ þ d

�
þ h22Kffiffiffiffiffi

h1
p

Rp
ffiffiffiffi
C

p
Z s

wð1hÞ
1 ðzÞwð1hÞ

1 ðzÞdz
�
wð2hÞ

1 ðsÞ

ð44Þ
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The above relation provides a general solution to the Oð
ffiffi
e

p
Þ super-slow flow approximation (42), pro-

vided that a solution of (36) has been computed. The constant coefficients c and d in (44) are selected so that

asymptotic properties of the overall solution as s ! 	1 are satisfied.

As an application, we will use the general formula (44) to compute the Oð
ffiffi
e

p
Þ perturbation of the

homoclinic loop of the forced pendulum (36), assuming that u > 2Kbx3=ðp
ffiffiffiffi
C

p
Þ (so that the homoclinic

loop and the resonance capture region exist). A similar procedure can be followed to compute the per-

turbations of the periodic orbits inside and the nonperiodic orbits outside the unperturbed homoclinic loop

of (36). The methodology is similar to that used by Vakakis (1994) to analyze the splitting of the manifolds

of a harmonically forced pendulum.

The unperturbed phase plane ðw0;
ow0

os Þ of (36) contains unstable and stable fixed points, and a homoclinic

loop that connects the unstable fixed point with itself, and encircles a family of periodic orbits that sur-

round the stable fixed point. When Oð
ffiffi
e

p
Þ terms are taken into account, we expect the degenerate homo-

clinic loop to breakdown and to be decomposed into one-dimensional stable and unstable invariant

manifolds of the hyperbolic unstable fixed point; we denote the solutions on the invariant manifolds by

wðs;uÞðsÞ, where the superscripts ðsÞ and ðuÞ indicate solutions on the stable and unstable manifolds,

respectively We denote the zeroth order approximations to these special solutions by wðs;uÞ
0 ðsÞ, with the

initial conditions specified at s ¼ 0. We compute the zeroth order approximations by solving Eq. (36);

although an exact analytic solution can be derived in terms of exponential functions (by integrating the

equation by quadratures), in this work we resorted to direct numerical solutions of (36) to approximate

them. The Oð1Þ solutions on the homoclinic loop satisfy the limiting conditions:
lim
s!1

wðsÞ
0 ðsÞ ¼ cos�1ð�N=MÞ and lims!�1w

ðuÞ
0 ðsÞ ¼ cos�1ð�N=MÞ ð45Þ
The Oð
ffiffi
e

p
Þ perturbations wðs;uÞ

1 ðsÞ of wðs;uÞ
0 ðsÞ are computed by the general expression (44) with appro-

priate evaluation of the constants c and d. We express these perturbations as,
wðs;uÞ
1 ðsÞ ¼ cðs;uÞ

�
� h22Kffiffiffiffiffi

h1
p

Rp
ffiffiffiffi
C

p
Z s

0

wðs;uÞ1h
1 ðzÞwðs;uÞ2h

1 ðzÞdz
�
wðs;uÞ1h

1 ðsÞ

þ dðs;uÞ
�

þ h22Kffiffiffiffiffi
h1

p
Rp

ffiffiffiffi
C

p
Z s

0

wðs;uÞ1h
1 ðzÞwðs;uÞ1h

1 ðzÞdz
�
wðs;uÞ2h

1 ðsÞ ð46Þ
where,
wðs;uÞ1h
1 ¼ � owðs;uÞ

0

os
; wðs;uÞ2h

1 ¼ wðs;uÞ1h
1 ðsÞ

Z s

dz½wðs;uÞ1h
1 ðzÞ��2 ð47Þ
are the corresponding linearly independent homogeneous solutions. The first term in (46) is well behaved

since it reaches a bounded motion as s ! 	1. Considering the second term, however, as s ! 	1 the

function wðs;uÞ2h
1 ðsÞ diverges, whereas the definite integral reaches a finite limit; it can be shown that in order

to obtain bounded limits for wðs;uÞ
1 ðsÞ as s ! 	1, it is necessary to compute the constants dðs;uÞ as follows:
ds ¼ � h22Kffiffiffiffiffi
h1

p
Rp

ffiffiffiffi
C

p
Z þ1

0

wðsÞ1h
1 ðzÞwðsÞ1h

1 ðzÞdz

du ¼ � h22Kffiffiffiffiffi
h1

p
Rp

ffiffiffiffi
C

p
Z �1

0

wðuÞ1h
1 ðzÞwðuÞ1h

1 ðzÞdz
ð48Þ
To evaluate the constants cðs;uÞ we observe that due to the first of relations (47), motions on the stable
and unstable manifolds can be approximately expressed in the form:



Fig. 6
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wðs;uÞðs; eÞ ¼ wðs;uÞ
0 ðsÞ �

ffiffi
e

p
cðs;uÞ

owðs;uÞ
0 ðsÞ
os

þ
ffiffi
e

p
H ðs;uÞðsÞ þ OðeÞ

¼ wðs;uÞ
0 ðs�

ffiffi
e

p
cðs;uÞ þ OðeÞÞ þ

ffiffi
e

p
H ðs;uÞðsÞ þ OðeÞ ð49Þ
where H ðs;uÞðsÞ denote the Oð
ffiffi
e

p
Þ terms that do not depend on cðs;uÞ. From the above expression we note that

if cðs;uÞ 6¼ 0 unwanted (and unjustified) time shifts are introduced in the Oð1Þ approximations. Since the

outlined perturbation analysis is carried out specifying the initial conditions at s ¼ 0 the time-shift in (49)
must be eliminated by setting:
cðsÞ ¼ cðuÞ ¼ 0 ð50Þ
Combining the previous results, correct to Oð
ffiffi
e

p
Þ, we can write the following expressions for the solu-

tions on the perturbed stable and unstable invariant manifolds:
wðs;uÞðsÞ ¼ wðs;uÞ
0 ðsÞ þ

ffiffi
e

p ��
� h22Kffiffiffiffiffi

h1
p

Rp
ffiffiffiffi
C

p
Z s

0

wðs;uÞ1h
1 ðzÞwðs;uÞ2h

1 ðzÞdz
�
wðs;uÞ1h

1 ðsÞ

�
ffiffi
e

p h22Kffiffiffiffiffi
h1

p
Rp

ffiffiffiffi
C

p
Z 	1

s
wðs;uÞ1h

1 ðzÞwðs;uÞ1h
1 ðzÞdz

� �
wðs;uÞ2h

1 ðsÞ
�
þ OðeÞ ð51Þ
In Fig. 6 we depict the plot of (51) in the projection ðw0;wÞ of the phase space of the slow flow (where
primes denote differentiation with respect to s). Comparing this plot (solid line) with the unperturbed

homoclinic loop (dashed line) we see that the Oð
ffiffi
e

p
Þ perturbations indeed breakup the degenerate homo-

clinic structure and define the path through which trajectories are ‘trapped’ in the resonance capture region.

We note that since the analysis includes only terms up to Oð
ffiffi
e

p
Þ, the results are expected to be accurate only

up to times of Oð1=
ffiffi
e

p
Þ, and to diverge after that. By carrying the perturbation analysis to higher order one

should be able to extend the validity of the asymptotic results to longer times, and study the resonance

capture region more accurately (including the ‘trapping’ and ‘escape’ paths leading into and out of the

region in phase space of sustained capture).
. Projection of the phase space of the super-slow flow incorporating Oð
ffiffi
e

p
Þ corrections; shadowed region indicates the

imate region of resonance capture and the ‘trapping’ path for the trajectories.
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5. Energy pumping resulting from multiple, simultaneous resonant interactions

In this section we will present an alternative way of nonlinear resonance interactions leading to energy

pumping, realized in multi-degree-of-freedom (MDOF) essentially nonlinear end attachments. As shown
below, this type of MDOF nonlinear end attachments leads to simultaneous resonance interactions of

multiple nonlinear normal modes (NNMs) with multiple normal modes of the main linear system; such

simultaneous resonance interactions can lead to multi-mode energy pumping from the linear system to

the attachment through a mechanism different than resonance capture cascading.

To demonstrate this alternative way of resonance interactions we consider the system of Fig. 7,

consisting of a two-DOF linear system weakly coupled to a three-DOF attachment. We assume that there

exists weak viscous damping, and that the ungrounded end attachment possesses essentially nonlin-

ear (nonlinearizable) stiffnesses. In the limit of zero small parameter, e ! 0, this system decouples into
two subsystems: (a) a linear one, possessing two (in-phase and an anti-phase) normal modes; and (b) an

essentially nonlinear one, possessing a rigid body mode corresponding to x ¼ 0, and two nonlin-

ear normal modes (NNMs) (Vakakis et al., 1996). By NNMs we denote synchronous free periodic

motions of the nonlinear system, analogous to the normal modes of classical linear vibration theory. In

Fig. 8 we depict typical backbone curves of the two NNMs of the decoupled nonlinear system (corre-

sponding to e ¼ 0), e.g., the frequency–energy relationships of the free periodic motions. Considering

the positions of the natural frequencies of the decoupled linear system, we conclude that depending on

the energy of the vibration there exists the possibility for multiple internal resonances between the NNMs
and the linear normal modes (points A, B, and C in Fig. 8). Each of these internal resonances is

capable of producing 1:1 resonance capture phenomena of the type considered in earlier sections.

Moreover, the possibility exists for the occurrence of simultaneous resonance captures between each
Fig. 7. Linear system with MDOF essentially nonlinear end attachment.
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Fig. 8. Backbone curves of the NNMs of the decoupled system corresponding to e ¼ 0, and possibilities for multiple resonance

captures.
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NNM and one of the normal modes of the linear system, which leads to an alternative way to resonance

capture cascading for multi-mode nonlinear energy pumping from the linear system to the nonlinear

attachment.

To demonstrate energy pumping in the system of Fig. 7, we express the equations of motion in terms of
the modal coordinates of the linear subsystem:
Fig. 9.

FFT o
€x1 þ ek _x1 þ x2
1

�
þ e
2

	
x1 � e

x2
2

�
þ v1

	
¼ 0

€x2 þ ek _x2 þ x2
2

�
þ e
2

	
x2 � e

x2
2

�
� v1

	
¼ 0

l€v1 þ ekð _v1 � _v2Þ þ e v1
�

þ x2 � x1
2

	
þ C1ðv1 � v2Þ3 ¼ 0

l€v2 þ ekð2_v2 � _v1 � _v3Þ þ C1ðv2 � v1Þ3 þ C2ðv2 � v3Þ3 ¼ 0

l€v3 þ ekð _v3 � _v2Þ þ C2ðv3 � v2Þ3 ¼ 0

ð52Þ
In Fig. 9 we depict the transient responses and their Fast Fourier Transforms (FFTs) of the system with

parameters,
e ¼ 0:2; l ¼ 0:2; C1 ¼ C2 ¼ 0:3; k ¼ 0:25; x2
1 ¼ 1; x2

2 ¼ 3
and initial conditions _x1ð0Þ ¼ _x2ð0Þ ¼ 5:0, with all other displacements and velocities zero. This set of initial

conditions corresponds to impulsive excitations of both modes of the linear subsystem. In the plots of Fig. 9
we depict the linear modal coordinates x1ðtÞ and x2ðtÞ, as well as the nonlinear modal coordinates z1ðtÞ and
z2ðtÞ, defined as,
z1ðtÞ ¼ ½v2ðtÞ � v3ðtÞ� � ½v1ðtÞ � v2ðtÞ�; z2ðtÞ ¼ ½v2ðtÞ � v3ðtÞ� þ ½v1ðtÞ � v2ðtÞ�
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We note as this point that for the parameters chosen the decoupled nonlinear system possesses the two

similar NNMs (corresponding to straight lines in the configuration space of the system, Vakakis et al., 1996)

½v2ðtÞ � v3ðtÞ� ¼ ½v1ðtÞ � v2ðtÞ� and ½v2ðtÞ � v3ðtÞ� ¼ �½v1ðtÞ � v2ðtÞ�; hence, z1ðtÞ denotes the response of the

in-phase similar NNM, whereas z2ðtÞ the response of the out-of-phase similar NNM.
Studying the transient responses we note that although there is no detectable resonance capture cas-

cading (e.g., sequential resonance captures with the linear modes of the type studied in previous sections),

the transient responses z1ðtÞ and z2ðtÞ possess at least three strong frequency components, two of which are

close to the two natural frequencies of the linear subsystem, and one lying in between. Hence, the NNMs of

the MDOF attachment seem to engage in resonance capture with both modes of the linear system, without,

however, engaging in resonance capture cascading. The additional mode appearing in the FFTs of z1ðtÞ and
z2ðtÞ is generated due to the NNM bifurcations that occur due to the internal resonances between the linear

and nonlinear subsystems (points A, B, and C in Fig. 8, Vakakis et al., 2003). As a result, energy pumping
from both linear modes to the nonlinear system takes place, without the occurrence of resonance capture

cascading.
6. Concluding remarks

The Oð
ffiffi
e

p
Þ corrections considered in the previous local asymptotic analysis do not capture radiation

effects from the nonlinear attachment to the chain; by including OðeÞ terms in the asymptotic analysis one
should be able to take into account the integral terms in (31a) and (31b) that model the energy radiation

effects, and, hence, one should be able to also study the ‘drift’ of the stable equilibrium point in the res-

onance capture region as the energy of the attachment diminishes due to damping dissipation and radiation

to the chain. Indeed, as time increases one anticipates the entire resonance capture region to gradually

shrink to zero as the energy of the nonlinear attachment asymptotically tends to zero.

In addition, by carrying the analysis to higher orders of approximation (a tedious exercise that, however,

could be conveniently performed through the use of computer algebra), one could be able to more accu-

rately determine the domain of attraction of the resonance capture region. This would establish the initial
conditions of the system for which passive energy pumping can occur, which would be helpful from a design

point of view.

We note that the local asymptotic results presented in this paper can be applied to study reso-

nance capture interactions of essentially nonlinear attachments with a more general class of finite-DOF

linear systems; this can be achieved by reducing the problem to a series of resonance captures of the

attachment with individual structural modes. Hence, the presented analysis is general, and of wide

applicability.

Finally, by considering the interaction of a linear system with a MDOF nonlinear end attachment we
presented an alternative way to resonance capture cascading for multi-mode nonlinear energy pumping;

this is based on simultaneous resonant interactions of multiple NNMs of the end attachment with multiple

normal modes of the linear system. This new design paves the way for more effective multi-mode energy

pumping from the linear system to the attachment.
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Appendix A. Analytic approximation of the motion of the nonlinear attachment in the limit of small

oscillations

Considering the response of the nonlinear attachment after the energy pumping phenomenon has taken

place, the nonlinear oscillator performs slowly decaying oscillations due to damping dissipation with small

amplitude. Because of the small amplitude of the attachment we neglect the cubic term in the last equation

of system (1), and consider the following approximate system:
€u1 þ u1ðx2
0 þ 2aÞ � au2 ¼ 0

€un þ unðx2
0 þ 2aÞ � aðunþ1 � un�1Þ ¼ 0; n ¼ 2; 3; . . . ;N � 1

€uN þ uN ðx2
0 þ aþ eÞ � auN�1 � ev ¼ 0

€vþ eb _vþ eðv� uN Þ ¼ 0

ðA:1Þ
We write this system into the following matrix:
I€xþ Kxþ B _x ¼ 0; xðtÞ 2 RNþ1 ðA:2Þ

where K and B are ðN þ 1Þ � ðN þ 1Þ stiffness and damping matrices. We want to find the eigenvalues and
eigenvectors of the symmetric matrix K. This matrix can be split up into the sum of two symmetric matrices:
K ¼ K0 þ eK1 ðA:3Þ

where,
K0 ¼

x2
0 þ 2a �a 0 � � � � � � � � � � � � � � � � � � 0

�a x2
0 þ 2a �a 0 � � � � � � � � � � � � � � � 0

0 � � � � � � � � � 0 �a x2
0 þ a 0

0 � � � � � � � � � 0 0 0

0
BBB@

1
CCCA and

K1 ¼

0 0 0 0

..

. ..
. ..

. ..
.

0 0 1 �1

0 0 �1 1

0
BBBB@

1
CCCCA
We denote the eigenvalues of K0 by,
kð0Þi ¼ x2
i > 0; 16 i6N ; kð0ÞNþ1 ¼ 0 ðA:4Þ
and the corresponding eigenvectors by:
/ð0Þ
i ¼

/ð0Þ
i;1

/ð0Þ
i;2

..

.

/ð0Þ
i;N

0

0
BBBBBB@

1
CCCCCCA
; /ð0Þ

i;k 6¼ 0; 16 i6N ; /ð0Þ
Nþ1 ¼

0

..

.

0
1

0
BB@

1
CCA ðA:5Þ
We now consider the eigenvalue problem Kui ¼ kiui, and approximate the eigensolutions in the fol-

lowing perturbation form,
ki ¼ kð0Þi þ ekð1Þi þ Oðe2Þ

ui ¼ uð0Þ
i þ euð1Þ

i þ Oðe2Þ
ðA:6Þ
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where,
kð1Þi ¼ uð0ÞT
i K1u

ð0Þ
i ¼ ðuð0Þ

i;N Þ
2
; 16 i6N

kð1ÞNþ1 ¼ uð0ÞT
Nþ1K1u

ð0Þ
Nþ1 ¼ 1

ðA:7aÞ
and,
uð1Þ
i ¼

XN
m6¼i

uð0ÞT
m K1u

ð0Þ
i

x2
i � x2

m

uð0Þ
m þ uð0ÞT

Nþ1K1u
ð0Þ
i

x2
i

uð0Þ
Nþ1; 16 i6N

uð1Þ
Nþ1 ¼

XN
m¼1

uð0ÞT
m K1u

ð0Þ
Nþ1

�x2
m

uð0Þ
m

ðA:7bÞ
Taking into account the definition of matrix K1 the corrections to the eigenvectors are expressed as:
uð1Þ
i ¼

XN
m6¼i

uð0Þ
m;Nu

ð0Þ
i;N

x2
i � x2

m

uð0Þ
m �

uð0Þ
Nþ1;Nþ1u

ð0Þ
i;N

x2
i

uð0Þ
Nþ1; 16 i6N

uð1Þ
Nþ1 ¼ �

XN
m¼1

uð0ÞT
m;N u

ð0Þ
Nþ1;Nþ1

�x2
m

uð0Þ
m

ðA:7cÞ
Therefore, through first order the eigenvalues of the perturbed problem are expressed as:
ki ¼ x2
i þ eðuð0Þ

i;N Þ
2 þ Oðe2Þ; 16 i6N

kð1ÞNþ1 ¼ eþ Oðe2Þ
ðA:8Þ
In order to diagonalize the stiffness matrix K, we consider the ðN þ 1Þ � ðN þ 1Þ matrix Q composed of

the ðN þ 1Þ normalized eigenvectors. Because K is symmetrical any two different normalized eigenvectors

are orthogonal vectors satisfying the relations,
QTQ ¼ I ; QTKQ ¼ D
where D is the diagonal matrix of eigenvalues. Introducing the coordinate transformation,
q ¼ QTx ðA:9Þ

and pre-multiplying (A.2) by QT we express the system into the following simplified form:
€qþ Dqþ QTBQ _q ¼ 0 ðA:10Þ

where,
QTBQ ¼ eb

/2
1;Nþ1 /1;Nþ1/2;Nþ1 � � � /1;Nþ1/Nþ1;Nþ1

/1;Nþ1/2;Nþ1 /2
2;Nþ1 � � � /2;Nþ1/Nþ1;Nþ1

..

. ..
.

� � � ..
.

/1;Nþ1/Nþ1;Nþ1 /2;Nþ1/Nþ1;Nþ1 � � � /2
Nþ1;Nþ1

0
BBBB@

1
CCCCA ¼

0 0 � � � 0

0 0 � � � 0

..

. ..
.

� � � ..
.

0 0 � � � eb

0
BB@

1
CCAþ Oðe2Þ
Therefore, to the first approximation the set of equations (A.10) can be expressed as:
€qi þ kiqi ¼ 0; 16 i6N

€qNþ1 þ kNþ1qnþ1 þ eb _qNþ1 ¼ 0
ðA:11Þ
Considering the form of the above set of uncoupled equations, we conclude that the approximate fre-
quencies of the system (A.1) for sufficiently small amplitudes (e.g., after the energy pumping regime) are

given by:
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ffiffiffiffi
ki

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ eð/ð0Þ
i;N Þ

2
q

; 16 i6N

xNþ1 ¼
ffiffi
e

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eb2

4

s ðA:12Þ
This result indicates that after the resonance capture regime the nonlinear attachment oscillates with

small amplitude and approximate frequency of oscillation equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1� eb2=4Þ

q
and damping ratio equal

to f ¼ be=2.
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